"गणित" च्या विविध आवृत्यांमधील फरक
Content deleted Content added
No edit summary |
|||
ओळ ३०:
== नोटेशन, भाषा आणि तर्काधिष्ठता ==
गणितात हल्ली वापरल्या जाणा-या नोटशनपैकी काहीच सोळाव्या शतकापर्यंत शोधले गेले होते. त्या आधी गणित हे केवळ शब्दांत व्यक्त केले जात असे
नवशिक्यांसाठी गणिताची भाषासुद्धा अंमळ क्लिष्टच आहे. अगदी, किंवा-केवळ सारख्या
मूलतः काटेकोरपणा हे गणितातील सिद्धतांसाठी आवश्यक आहे. शिस्तबद्ध [[कार्यकारणभाव]] लावून मूळ वाक्यांपासून प्रमेये सिद्ध करण्याची गणितींची इच्छा असते. अंतःप्रेरणा आयत्या वेळेस दगा देऊ शकते. त्यामुळे चुकीचे सिद्धान्तही मांडले जाऊ शकतात. गणिताच्या इतिहासात असे अनेक वेळा झालेही आहे. हे टाळण्यासाठी काटेकोरपणा
ग्रीकांच्या काळी सिद्धतांचे मुद्दे विस्तृत रितीने मांडण्यावर भर होता. न्यूटनच्या काळी काटकोरपणा त्या मानाने कमी होता. न्यूटनने वापरलेल्या व्याख्यांमधील कच्च्या दुव्यांमुळे १९ व्या शतकात काळजीपूर्वक विश्लेषण आणि औपचारिक सिद्धतांचा पुन्हा उदय झाला. संगणकाच्या मदतीने लिहिलेल्या सिद्धता वापरल्या जाव्यात अथवा नाही यावर आजच्या गणितींमध्ये मतभेद आहेत. अतिभव्य आकडेमोडींचा पडताळा करणे अत्यंत अवघड असल्याने अशा प्रकारच्या सिद्धतांमध्ये अपेक्षित काटेकोरपणाचा अभाव असू शकतो. परंपरेच्या दृष्टीने मूलवाक्ये ही स्वयंप्रकाशित तथ्ये होती. परंतु,
सगळ्याच गणितास मूलवाक्याच्या आधाराने सिद्ध करणे हे हिलबर्टच्या आज्ञावलीचे उद्दिष्ट होते. परंतु गोडेलच्या अपूर्णतेच्या सिद्धान्तानुसार कुठल्याही यथोचित मूळ वाक्यांच्या विधिविधानात सिद्ध न करता येण्याजोगी सूत्रे असतातच. त्यामुळे गणिताचे संपूर्ण मूलवाक्यायन अशक्य आहे. इतके असले तरी गणित हे कुठल्यातरी संच सिद्धांतातील (संचप्रवादातील) मूळवाक्यायन आहे असे समजले जाते. या दृष्टीने पहाता प्रत्येक गणिती वाक्य किंवा सिद्धान्त हा संचसिद्धान्तातील सूत्रांच्या रूपात मांडला जाऊ शकतो.
|