गॉसचा चुंबकीचा नियम

(चुंबकीचा गॉसचा नियम या पानावरून पुनर्निर्देशित)


भौतिकीत गॉसचा चुंबकीचा नियम हे अभिजात विद्युतचलनगतिकीमधल्या मॅक्सवेलच्या चार समीकरणांपैकी एक आहे. हा नियम असे सांगतो की चुंबकी क्षेत्र Bचे अपसरण शून्य असते.[] दुसऱ्या शब्दांत हे गुंडाळ सदिश क्षेत्र (सोलेनॉइड व्हेक्टर फिल्ड) आहे. ह्याच अर्थाने चुंबकी एकध्रुव अस्तित्त्वात नाही असेपण म्हणले जाऊ शकते. (चुंबकीचा मूलभूत घटक "चुंबकी प्रभार" नसून चुंबकी द्विध्रुव आहे. तथापि एकध्रुवाचे अस्तित्त्व सिद्ध झाले तर ह्या नियमात बदल करावे लागेल.)

विद्युतचुंबकत्व
विद्युत · चुंबकत्व

गॉसचा चुंबकी नियम दोन रूपांत लिहिता येऊ शकते - भैदिक रूप आणि ऐकन रूप. अपसरण सिद्धांतामुळे ही दोन रुपे समान आहेत.

"गॉसचा चुंबकीचा नियम" "[] हे नाव वैश्विकरित्या वापरली जात नाही. हा नियम "मुक्त चुंबकी ध्रुवाचे नास्तित्व" म्हणूनही ओळखला जातो[]; एक संदर्भ ह्याचे "नाव नाही" असे उघडपणे सांगतो.[]

भैदन रूप

संपादन

गॉसच्या चुंबकाच्या नियमाचे भैदन स्वरूप हे सांगतो की:

 

येथे ∇• हा अपसरण, आणि B हा चुंबकी क्षेत्र दाखविते.

ऐकन रूप

संपादन
 
बंदिस्त पृष्ठाची व्याख्या. डावीकडे: बंदिस्त पृष्ठाची उदाहरणे, जसे - गोल, वृत्तवलय, घन ह्यांची पृष्ठे. ह्यांपैकी कुठल्याही पृष्ठातून जाणारा चुंबकी प्रवाह शून्य असतो. उजवीकडे: अबंदिस्त पृष्ठांची उदाहरणे, जसे - चकतीपृष्ठ, चौरसपृष्ठ, किंवा अर्धगोलपृष्ठ. ह्या सगळ्यांना सीमा (लाल रेषा) असून ते संपूर्ण ३मि आकारमान बंदिस्त करत नाही. आणि म्हणून ह्यातून जाणारा चुंबकी प्रवाह "शून्य असेलच असे नाही".

गॉसच्या चुंबकीच्या नियमाचे ऐकन स्वरूप हे सांगतो की:

   

येथे S हा कुठलाही बंदिस्त पृष्ठ (उजवीकडील चित्र पहा), आणि dA हा एक सदिश असून, त्याची किंमत म्हणजे पृष्ठ ∂V च्या अतिसूक्ष्म भागाचे क्षेत्रफळ आणि त्याची दिशा म्हणजे त्या क्षेत्रफळावर टाकलेल्या बहिर्गामी लंबाची दिशा होय. (अधिक माहितीसाठी पहा - क्षेत्र सदिश आणि पृष्ठ ऐकन.)

समीकरणाची डावी बाजू चुंबकी क्षेत्राचा पृष्ठातून जाणारा निव्वळ प्रवाह दाखविते, आणि गॉसचा चुंबकीचा नियम हे सांगते की ते नेहमीच शून्य असते. अपसरण सिद्धांतामुळे गॉसचा चुंबकीचा नियमाची दोन रुपे - भैदिक रूप आणि ऐकन रूप - समान आहेत.

ह्या रुपातील हा नियम हे सांगतो की अवकाशातील प्रत्येक आकारमान घटकांत जाणारी आणि बाहेर पडणारी "चुंबकी क्षेत्र रेषा" अगदी सारख्याच प्रमाणांत असतात. अवकाशात कुठल्याही बिंदूत एकूण "चुंबकी प्रभार" प्रभारित किंवा तयार होऊ शकत नाही. उदाहरणार्थ, चुंबकाचा दक्षिण ध्रुव अगदी त्याच्या उत्तर ध्रुवाइतकीच बलवान असते, आणि उत्तरध्रुवाशिवाय मुक्त-अस्तित्त्व दक्षिण ध्रुव (चुंबकी एकध्रुव) असूच शकत नाही.

हे सुद्धा पहा

संपादन

संदर्भ

संपादन
  1. ^ a b Tai L. Chow. Electromagnetic Theory: A modern perspective. p. 134.
  2. ^ John David Jackson. Classical Electrodynamics. p. 237.
  3. ^ David J. Griffiths. Introduction to Electrodynamics. p. 321.